SI: Chapters 13 and 14 worksheet

1. Match the following terms with their definition:

	A homogeneous mixture of 2 or more substances	a. solute
	What does the dissolving	b. Aqueous solution
	What is being dissolved	c. Saturated solution
	When the solvent is water	d. solvent
	The amount of the compound that dissolves in a certain amount of solvent at a certain temperature.	e. solubility
	Holds the max amount of solute under solution conditions	f. solution
	Solution containing a soulute that disassociates into ions.	g. Henry's law
	The solubility of a gas in a liquid increases with increasing pressure	h. Electrolyte solution

Term	Definition	Visual/ example
Molarity		

Molality		
Dilution		
Colligative Properties		
Osmosis		
Mass Percent		

\square
2. What is the mass percent of a solution prepared by dissolving $\mathbf{3 0 0 0} \mathbf{~ m g}$ of $\mathbf{N a O H}$ in $\mathbf{5 0}$ grams of water?
3. What is the molarity of a $\mathbf{2 0} \mathbf{L}$ solution that contains $\mathbf{4 5}$ grams of dissolved solute?
4. What is the molality of a solution prepared when 80.0 ml of a $5.0 \mathbf{M ~ K C l}$ solution is diluted to a volume of 0.600 L ?
5. What is the freezing point of a solution prepared by adding $\mathbf{2 6 5 . 0 g}$ of copper (II) Sulfate Pentahydrate to 5.00 L of water?
6. Calculate the boiling point of a 5.32 M solution of sucrose in water

Chapter 14:

Term	Definition	Visual
Acid		
Base		
Conjugate Base		

Conjugate Acid		
Amphiprotic		
Neutralization		
Titration		

Term	Definition	Image
Equivalence Point		
Indicator		
End point		
Strong Acid/ Base		

Weak acid. Base		
Acidic solution		
Basic Solution		
Buffer Solution		

Illustrate a ph scale below:

Math:

1. Calculate the poh of an acidic solution with an H3o+ of $1.456 \times 10^{\wedge}-15$
2. Determine the ph of an acidic solution with an oh concentration of $0.2314 X 10^{\wedge}$-3.
